Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Vernet, Joël R; Bryant, Julia J; Motohara, Kentaro (Ed.)
- 
            Abstract Young, self-luminous super-Jovian companions discovered by direct imaging provide a challenging test for planet formation and evolution theories. By spectroscopically characterizing the atmospheric compositions of these super-Jupiters, we can constrain their formation histories. Here we present studies of the recently discovered HIP 99770 b, a 16MJuphigh-contrast companion on a 17 au orbit, using the fiber-fed high-resolution spectrograph KPIC ( ∼ 35,000) on the Keck II telescope. OurK-band observations led to detections of H2O and CO in the atmosphere of HIP 99770 b. We carried out free retrieval analyses usingpetitRADTRANSto measure its chemical abundances, including the metallicity and C/O ratio, projected rotation velocity ( ), and radial velocity (RV). We found that the companion’s atmosphere has C/O and [M/H] (1σconfidence intervals), values consistent with those of the Sun and with a companion formation via gravitational instability or core accretion. The projected rotation velocity km s−1is small relative to other directly imaged companions with similar masses and ages. This may imply a nearly pole-on orientation or effective magnetic braking by a circumplanetary disk. In addition, we added the companion-to-primary relative RV measurement to the orbital fitting and obtained updated constraints on orbital parameters. Detailed characterization of super-Jovian companions within 20 au like HIP 99770 b is critical for understanding the formation histories of this population.more » « less
- 
            Schmidt, Dirk; Vernet, Elise; Jackson, Kathryn J (Ed.)The first scientific observations with adaptive optics (AO) at W. M. Keck Observatory (WMKO) began in 1999. Through 2023, over 1200 refereed science papers have been published using data from the WMKO AO systems. The scientific competitiveness of AO at WMKO has been maintained through a continuous series of AO and instrument upgrades and additions. This tradition continues with AO being a centerpiece of WMKO’s scientific strategic plan for 2035. We will provide an overview of the current and planned AO projects from the context of this strategic plan. The current projects include implementation of new real-time controllers, the KAPA laser tomography system and the HAKA high-order deformable mirror system, the development of multiple advanced wavefront sensing and control techniques, the ORCAS space-based guide star project, and three new AO science instruments. We will also summarize steps toward the future strategic directions which are centered on ground-layer, visible and high-contrast AO.more » « less
- 
            Vernet, Joël R; Bryant, Julia J; Motohara, Kentaro (Ed.)
- 
            Abstract The ~5 Myr PDS 70 is the only known system with protoplanets residing in the cavity of the circumstellar disk from which they formed, ideal for studying exoplanet formation and evolution within its natal environment. Here, we report the first spin constraint and C/O measurement of PDS 70b from Keck/KPIC high-resolution spectroscopy. We detected CO (3.8σ) and H2O (3.5σ) molecules in the PDS 70b atmosphere via cross correlation, with a combined CO and H2O template detection significance of 4.2σ. Our forward-model fits, using BT-Settl model grids, provide an upper limit for the spin rate of PDS 70b (<29 km s−1). The atmospheric retrievals constrain the PDS 70b C/O ratio to (<0.63 under 95% confidence level) and a metallicity [C/H] of dex, consistent with that of its host star. The following scenarios can explain our measured C/O of PDS 70b in contrast with that of the gas-rich outer disk (for which C/O ≳ 1). First, the bulk composition of PDS 70b might be dominated by dust+ice aggregates rather than disk gas. Another possible explanation is that the disk became carbon enrichedafterPDS 70b was formed, as predicted in models of disk chemical evolution and as observed in both very low-mass stars and older disk systems with JWST/MIRI. Because PDS 70b continues to accrete and its chemical evolution is not yet complete, more sophisticated modeling of the planet and the disk, and higher-quality observations of PDS 70b (and possibly PDS 70c), are necessary to validate these scenarios.more » « less
- 
            Abstract We used the Keck Planet Imager and Characterizer to obtain high-resolution (R∼ 35,000)K-band spectra ofκAndromedae b, a planetary-mass companion orbiting the B9V star,κAndromedae A. We characterized its spin, radial velocity, and bulk atmospheric parameters through use of a forward-modeling framework to jointly fit planetary spectra and residual starlight speckles, obtaining likelihood-based posterior probabilities. We also detected H2O and CO in its atmosphere via cross correlation. We measured a value forκAndromedae b of 38.42 ± 0.05 km s−1, allowing us to extend our understanding of the population of close-in bound companions at higher rotation rates. This rotation rate is one of the highest spins relative to breakup velocity measured to date, at close to 50% of breakup velocity. We identify a radial velocity km s−1, which we use with existing astrometry and radial velocity measurements to update the orbital fit. We also measure an effective temperature of 1700 ± 100 K and a of 4.7 ± 0.5 cgs dex.more » « less
- 
            Abstract We present the projected rotational velocity and molecular abundances for HD 33632 Ab obtained via Keck Planet Imager and Characterizer (KPIC) high-resolution spectroscopy. HD 33632 Ab is a nearby benchmark brown dwarf companion at a separation of ∼20 au that straddles the L–T transition. Using a forward-modeling framework with on-axis host star spectra, which provides self-consistent substellar atmospheric and retrieval models for HD 33632 Ab, we derive a projected rotational velocity of 53 ± 3 km s−1and carbon monoxide and water mass fractions of logCO = −2.3 ± 0.3 and logH2O = −2.7 ± 0.2, respectively. The inferred carbon-to-oxygen ratio (C/O = 0.58 ± 0.14), molecular abundances, and metallicity ([C/H] = 0.0 ± 0.2 dex) of HD 33632 Ab are consistent with its host star. Although detectable methane opacities are expected in L–T transition objects, we did not recover methane in our KPIC spectra, partly due to the highvsiniand to disequilibrium chemistry at the pressures to which we are sensitive. We parameterize the spin as the ratio of rotation to the breakup velocity, and compare HD 33632 Ab to a compilation of >200 very low-mass objects (M≲ 0.1M⊙) that have spin measurements in the literature. There appears to be no clear trend for the isolated low-mass field objects versus mass, but a tentative trend is identified for low-mass companions and directly imaged exoplanets, similar to previous findings. A larger sample of close-in gas giant exoplanets and brown dwarfs will critically examine our understanding of their formation and evolution through rotation and chemical abundance measurements.more » « less
- 
            Abstract We present high-resolutionK-band emission spectra of the quintessential hot Jupiter HD 189733 b from the Keck Planet Imager and Characterizer. Using a Bayesian retrieval framework, we fit the dayside pressure–temperature profile, orbital kinematics, mass-mixing ratios of H2O, CO, CH4, NH3, HCN, and H2S, and the13CO/12CO ratio. We measure mass fractions of and , and place upper limits on the remaining species. Notably, we find logCH4< −4.5 at 99% confidence, despite its anticipated presence at the equilibrium temperature of HD 189733 b assuming local thermal equilibrium. We make a tentative (∼3σ) detection of13CO, and the retrieved posteriors suggest a12C/13C ratio similar to or substantially less than the local interstellar value. The possible13C enrichment would be consistent with accretion of fractionated material in ices or in the protoplanetary disk midplane. The retrieved abundances correspond to a substantially substellar atmospheric C/O = 0.3 ± 0.1, while the carbon and oxygen abundances are stellar to slightly superstellar, consistent with core-accretion models which predict an inverse correlation between C/O and metallicity. The specific combination of low C/O and high metallicity suggests significant accretion of solid material may have occurred late in the formation process of HD 189733 b.more » « less
- 
            Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)We calculate an optical distortion solution for the OSIRIS Imager on the Keck I telescope, by matching observations of globular clusters to a Hubble reference catalogue. This solution can be applied to correct astrometric distortions in OSIRIS frames, improving the astrometric accuracy of observations. We model the distortion with a 5th order Legendre polynomial. The distortion we find matches the expected OSIRIS distortion, and has a fit error of 0.6 mas, but has large residuals of 7 mas. We are currently iterating on an improved reference frame to improve the residual. Additionally, we have installed the Precision Calibration Unit (PCU) on the Keck I optical bench, which will generates an artificial grid of stars for use in future distortion calculations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available